Причины возгорания электропроводки в квартире. Действия при возгорании электропроводки Пожар от проводки или нет как определить

Стремительная электрификация жилых зданий обязывает более внимательно анализировать электроустановку (электропроводку, электроприборы, защитную и коммутационную аппаратуру) с точки зрения опасности возникновения пожара. В данной статье рассмотрим условия, при которых короткое замыкание действительно может стать причиной пожара.

Нормативные требования

В соответствии с ПУЭ, электрическую сеть напряжением до 1 кВ в жилых, общественных, административных и бытовых зданиях требуется защищать от токов короткого замыкания и токов перегрузки.

ПУЭ-7
3.1.10
Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.
Кроме того, должны быть защищены от перегрузки сети внутри помещений:
осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно¬бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах.

3.1.11
В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:
80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), – для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) – для проводников всех марок.

Рис. 1. Характерная схема электроснабжения жилого здания

Схема электроснабжения

Рассмотрим характерную схему (рис. 1), где источником электроснабжения служит, как правило, отдельно стоящая подстанция с распределительным щитом 10(6)/0,4/0,23 кВ. На вводе в здание ВРУ-0,4/0,23 кВ. Следующая ступень – это этажный групповой распределительный щиток, и последняя ступень – это квартирный . Вышеперечисленные распределительные устройства подключены между собой проводниками, минимально допустимые сечения которых указаны в требованиях ПУЭ. Номинальные токи аппаратов, которые защищают провода и кабели от токов коротких замыканий и от перегрузки, выбираются в соответствии с требованиями ПУЭ.

Условия возгорания электропроводки

Возникает вопрос, может ли при коротком замыкании произойти возгорание электропроводки, если выполнены вышеперечисленные и другие требования ПУЭ? Рассматривая данный вопрос, необходимо обратить внимание на то, что возгорание электропроводки происходит при достижении проводником определенной температуры, зависящей от типа изоляции кабеля. В настоящее время широко применяется , у которого эта температура равна: Q = 350 O С.
Изменение температуры проводника при протекании тока короткого замыкания описывается формулами, которые приведены в . С учетом некоторых особенностей, а именно кратковременности протекания тока короткого замыкания, о чем будет рассказано далее, в рассматриваемых случаях для проводников с медными жилами можно использовать нижеследующую формулу:

где Q кон. и Q нач. – соответственно конечная и начальная температуры токоведущей жилы проводника, О С;
к – показатель степени:

(1а)

где t – время протекания тока короткого замыкания, с;
S – сечение проводника, мм 2 ;
– интеграл Джоуля или тепловой импульс, кА 2 /с.

В общем случае ток короткого замыкания содержит периодическую и апериодическую составляющие, т.е.:

Однако, как показывает анализ, влияние апериодической составляющей в данном случае невелико ввиду её быстрого затухания (постоянная времени затухания Т 0,003 с). В результате интегрирования на интервале времени действия защитной аппаратуры (0 — 0,02 с) получим:

где I д – действующее значение периодической составляющей тока короткого замыкания.
Тогда формула (1а) примет вид:

(4)

Из вышеперечисленных формул видим, что предельные значения токов короткого замыкания, при которых возгорание проводника не произойдет, зависят от его сечения и времени отключения короткого замыкания.


Рис. 2 (а). Времятоковые характеристики автоматических выключателей типа LSN


Рис. 2 (б). Времятоковые характеристики автоматических выключателей типа С 60а Merlin Gerin

Граничные значения токов короткого замыкания и минимально допустимые значения токов КЗ

Проводя анализ защитных времятоковых характеристик автоматических выключателей (рис. 2), мы наблюдаем две области: работа отсечки, предназначенной для отключения токов короткого замыкания, и работа тепловых расцепителей, предназначенных для защиты от перегрузки. Время действия отсечки измеряется сотыми и даже тысячными долями секунды, а время действия защиты от перегрузки измеряется от нескольких секунд до нескольких минут. Понятно, что короткие замыкания должны отключаться отсечкой автоматического выключателя как можно быстрее. Если короткое замыкание будет отключаться медленнее действующей тепловой защиты, то неминуемо произойдет повреждение соседних проводников горящей дугой, на которых вследствие этого также произойдут короткие замыкания. При этом возникновение пожара неминуемо.
Исходя из требований чувствительности, можно определить минимальные значения токов КЗ, при которых будет надежно срабатывать отсечка автоматических выключателей:

I кзмин. = I ном · 2 · 5,

где I ном – номинальный ток автомата;
2 – коэффициент надежности;
5 – кратность тока срабатывания отсечки.



Для определения максимально допустимых значений токов КЗ, при которых в электропроводке возгорание ещё не произойдет, используем формулы (1) и (2).
Примем начальную температуру проводника Q нач. = 30 O С. В качестве конечной требуется принять такую, при которой изоляция электропроводки ещё не теряет своих свойств и позволяет осуществлять дальнейшую эксплуатацию. Для кабелей и проводов с пластмассовой изоляцией эта температура находится в диапазоне 160 — 250 О С . Примем среднее значение Q кон. = 200 О С:

Важную роль играет время срабатывания электромагнитных расцепителей автомата при КЗ. ГОСТ Р 50345­99 , а также аналогичные зарубежные документы, к сожалению, содержат лишь требование о том, что время действия автоматических выключателей в начальной зоне отсечки (время мгновенного расцепления) должно быть менее 0,1 с. Однако из каталожных времятоковых характеристик автоматов следует, что на самом деле время срабатывания выключателей намного меньше. Так, для автоматов типа LSN и С 60а это время не превышает 20 мс, а при больших кратностях тока короткого замыкания ещё меньше (рис. 2а и 2б). При времени отключения 20 мс предельно допустимое значение тока КЗ для медного проводника сечением 1,5 мм 2 составит:

Задаваясь регламентированными ПУЭ минимально допустимыми значениями сечений медных проводников на разных ступенях системы электроснабжения (табл. 7.1.1), можно аналогичным образом определить максимальные и минимальные значения тока на других ступенях системы электроснабжения. Результаты расчетов приведены в табл. 1.


Табл. 1. Граничные значения тока КЗ на различных ступенях системы электроснабжения

Следует ещё раз подчеркнуть, что максимально допустимые значения тока КЗ в значительной мере зависят от быстродействия автоматического выключателя при КЗ.

Если необходимо определить минимально допустимое сечение кабеля или провода при заданном токе короткого замыкания и времени его отключения, то можно использовать формулу:

Влияние перегрузки проводников

В большинстве случаев, перегрузка электрической сети в жилом секторе может возникнуть при использовании дополнительных обогревательных электроприборов в холодное время года, в период аварий в системе водяного отопления и т.п. Несмотря на то, что внутренние электросети жилых, общественных, административных и бытовых зданий должны быть защищены от перегрузки, в соответствии с требованиями ПУЭ, однако же защитные аппараты допускают некоторую перегрузку проводников. Это связано с тем, что надежное срабатывание предохранителей происходит при токах, превышающих 1,6I ном, а автоматов – 1,45I ном.
Если, например, автомат выбран на основании требований ПУЭ, т.е. его номинальный ток равен длительно допустимому току проводника, то последний может длительно работать с нагрузкой 145% I доп., при этом его температура может достигать:

Q р = Q о + (Q д – Q р) · (I пред / I р) 2 = 30 + (65 – 25) 1,45 2 = 147 O С.

Эта величина больше длительно допустимой температуры для кабелей с пластмассовой изоляцией, указанной не только в ПУЭ и равной 65 O С, но и больше указанной в ГОСТ Р 53769-2010 и равной 70 O С.
При возникновении короткого замыкания в процессе длительной перегрузки температура проводника превысит предельно допустимое значение 350 O С и составит для S = 1,5 мм 2 при I кз = 1550 А (1):

Q кон. = 147 · е к + 228 (е к – 1) = 394 O С, где к = 0,506.

На основании вышеизложенных расчетов и анализа напрашивается вывод о том, что для исключения возможного превышения допустимых температур электропроводки при перегрузках и КЗ номинальные токи защитной аппаратуры следует выбирать несколько ниже, чем требует ПУЭ, как, например, для автоматических выключателей: I ном.авт. 80% I доп.
Обратим особое внимание на то, что действующие требования ПУЭ не обязывают выполнять проверки проводников до 1 кВ на термическую стойкость к токам КЗ. Однако в отношении жилых, общественных, административных и бытовых помещений с этим трудно согласиться с учетом возможных тяжелых последствий.

Реальные значения токов короткого замыкания в схеме электроснабжения зданий

Токи КЗ в системе электроснабжения напряжением до 1 кВ рассчитываются согласно методике, изложенной в ГОСТ 28249­93 . Расчет оказывается более сложным, чем для сетей напряжением 6–35 кВ, что объясняется рядом обстоятельств:

  • необходимостью учета не только реактивных, но и активных сопротивлений элементов схемы;
  • необходимостью учета сопротивлений контактных соединений;
  • необходимостью учета увеличения активных сопротивлений проводника при росте температуры;
  • необходимостью учета сопротивления дуги;
  • отсутствием точных данных по сопротивлениям нулевой последовательности некоторых элементов системы электроснабжения (кабели с непроводящей оболочкой, силовые трансформаторы со схемой соединения обмоток Y/Yн, Y/Zн).

Однако это отдельная тема для разговора.
Как показывают , при установке на подстанциях трансформаторов мощностью 630 кВ·А и более, токи КЗ у потребителя могут превышать указанные в табл. 1 максимально допустимые значения. С целью ограничения токов КЗ в электросети жилого помещения можно применять питающие трансформаторы со схемами соединения обмоток Y/Yн. Такие трансформаторы обладают повышенными сопротивлениями нулевой последовательности, снижающими токи однофазного КЗ . В ряде случаев следует идти на увеличение сечения проводников внутренней электропроводки по сравнению с требуемым по условиям допустимой нагрузки и минимально допустимыми значениями, указанными в ПУЭ.

Из всего вышеизложенного следует, что даже при выполнении действующих нормативных требований, в результате КЗ на отдельных участках электропроводки жилых зданий могут создаться условия для возгорания. Однако в этом случае само КЗ было бы неправильно квалифицировать как причину пожара. Истинными причинами пожара являются либо неправильные технические решения, либо недостаточная надежность и быстродействие примененной защитной аппаратуры, либо превышение нормативного срока эксплуатации электрооборудования и т.п.

ВЫВОДЫ

1. В результате коротких замыканий, при значительных величинах тока КЗ и недостаточном быстродействии защитной аппаратуры, существует реальная опасность возгорания или серьезного ухудшения состояния изоляции внутренней электропроводки зданий.
2. Учитывая особую опасность возгорания, целесообразно ввести нормативное требование о выполнении проверки термической стойкости электропроводки в жилых зданиях.
3. Для исключения перегрузок внутренней электропроводки номинальные токи защитных аппаратов необходимо выбирать ниже длительно допустимых токов защищаемых проводников.
4. При выборе защитных аппаратов особое внимание следует уделять надежным автоматическим выключателям с гарантированным быстродействием в зоне мгновенного расцепления 0,02 с и менее.

Литература, используемая в статье

1. Правила Устройства Электроустановок, 6-­е и 7-­е изд.
2. Технический циркуляр №Ц­02­98(э) Департамента стратегии развития и научно­технической политики РАО «ЕЭС России».
3. ГОСТ Р 50345­99. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения.
4. ГОСТ 28249­93. Токи короткого замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
5. Федоровская А.И., Фишман В.С. Силовые трансформаторы 10(6)/0,4 кВ.

Для организации любого производства необходимы следующие основные составляющие: помещение, производственная линия и бригада квалифицированных рабочих. Еще, разумеется, необходимо закупить сырье и обеспечить каналы сбыта продукции. Но цех не заработает, если...


  • Кабель с многожильными проводами От того какую мы выбираем марку кабеля, для проведения электромонтажных работ, зависит безопасность энергосистемы и электрооборудования. Одной из причин пожаров, как не печально об этом говорить, является...


  • Приобретая новую квартиру, перед началом отделочных работ, возникает необходимость капитального ремонта электропроводки. Это связано с тем, что электромонтаж электропроводки в новостройках выполняется по типовым проектами, которые не учитывают всех требований, ...


  • Электромонтаж и прокладка кабеля в жилых и нежилых помещениях Прокладка кабеля — это одна и важнейших частей электромонтажных работ и от того как грамотно проведён электромонтаж кабеля, будет зависить дальнейшая работа...

  • В число наиболее актуальных проблем в области обеспечения пожарной безопасности входит защита от огня жилых домов и зданий общественного назначения. При расследовании причин возникновения загораний, как правило, одной из основных версий называется неисправность электропроводки и других электроизделий.

    Общероссийская статистика утверждает, что 25-30% пожаров происходит из-за неисправностей и нарушений правил эксплуатации электропроводки и электроприборов. Так, в период с 2009-2013 годы по причине нарушения правил устройства и эксплуатации электрооборудования вцелом на территории Ханты-Мансийского автономного округа-Югры произошло 3011 пожаров, что составляет 25% от общего числа пожаров, происшедших в этот период (всего -12272). На пожарах, возникших по указанным причинам, погиб 81 человек - 15% от общего количества погибших в этот период (532), и пострадало 224 человека – 19% от общего числа пострадавших (1196). Из 3011 пожаров по причине нарушения правил монтажа, эксплуатации электрооборудования,электрических сетей, бытовых приборов и аппаратов защиты за 5 лет произошло1783 пожара – 60% случаев.

    Почему же происходят эти пожары?

    Для каждой электрической нагрузки, определяемой количеством и качеством подключенных к электросети приборов, соответственно подбирается определенного сечения электропровод. Если сечение электропровода не соответствует величине нагрузки, то провод будет нагреваться и, чем больше это несоответствие, тем больше нагревается электропроводка. Большая часть нашего жилого фонда - это дома 20-30 летней давности, а то и старше. Электропроводка этих домов была рассчитана на определенное, ограниченное потребление электроэнергии – до 1500 Вт. Количество потребителей электроэнергии во время проектирования и постройки этих домов было ограничено - телевизор, холодильник, радиоприемник, несколько лампочек освещения. Сейчас же у нас телевизоров - чуть ли не в каждой комнате, кроме того, кондиционеры, СВЧ-печи, стиральные машины, музыкальные центры и другие блага научно-технического прогресса, которых сейчас в изобилии. Нагрузка на электросети в настоящее время увеличилась в разы, а электропроводка осталась старой, а порой и ветхой. Подключая очередную покупку к электросети, мы вряд ли задумываемся: «А выдержит ли она очередное увеличение нагрузки, не приведет ли включение очередного электроприбора к перегреву и возгоранию электропроводки?».

    Кроме того, при нагрузке более допустимой, срабатывает автомат отключения или перегорает плавкая вставка в пробочном предохранителе. Тогда в место калиброванной плавкой вставки пробочного предохранителя «умельцы» используют всевозможные «жучки», а то и просто такое недопустимое в электротехнике устройство как гвоздь или что-нибудь подобное. Иногда меняют автомат отключения на более мощный, ток срабатывания которого не соответствует состоянию проводки. В этом случае электропроводка работает в перегруженном режиме – она греется, ее изоляция оплавляется, и два проводника касаются друг друга, то есть происходит короткое замыкание. Это сопровождается резким возрастанием силы тока, при этом провода мгновенно нагреваются до высокой температуры, происходит интенсивное искрение и, если рядом окажутся горючие материалы и конструкции (шторы, деревянная мебель и т.д.), они моментально воспламеняются.

    Возможны также и другие причины возгорания изоляции электропроводки:

    1. Перегрев электропроводки, который может быть:

    Локальный, возникающий в определенном месте электрической цепи из-за большого переходного сопротивления, то есть плохого электрического контакта. Например, в месте соединения электропроводов «вскрутку» или при окислении контактных поверхностей;

    На протяженном участке электрической цепи, вследствие перегрузки этого участка. Например, при использовании одной розетки для подключения нескольких достаточно мощных потребителей электроэнергии.

    2. Искрение в местах соединения электрических цепей, на клеммах электроприборов, из-за неплотного электрического контакта. В частности, из-за неплотного контакта вилок в гнездах штепсельной розетки происходит значительный нагрев и оплавление розетки.

    3. Утечка тока:

    С неизолированных участков цепи через загрязнения и токопроводящую пыль в коммутационных коробках, распределительных щитах и т.д.;

    С изолированных участков через поврежденную изоляцию.
    Сегодня, на территории Ханты-Мансийского автономного округа-Югры на учете состоит 8878 многоквартирных жилых домов с низкой пожарной устойчивостью. В период с 2009 по 2013 год на данных объектах произошло 1044 пожаров – 8,5 % от общего числа пожаров в этот период (12272) с гибелью 98 человек. Пожары в таких домах сопровождаются быстрым распространением огня и уничтожением строения полностью.

    К сожалению, приходится констатировать, что на сегодняшний день уровень пожарной профилактики эксплуатируемых электроустановок зданий весьма невысок. Основными методами профилактики являются визуальные осмотры сетей, аппаратов защиты, включая проверку их калибровки, других элементов электросхемы. Поэтому снижение пожарной опасности электрических сетей является одной из основных задач в профилактике пожаров.

    Возникновение аварийных режимов в электроустановках не является спонтанным событием, а «зарождается» и усиливается постепенно изо дня в день. Однако, даже на самом начальном этапе такие режимы уже возможно диагностировать, т.к. в местах их «зарождения» сразу начинает возникать аномальный нагрев. Сначала это единицы градусов, далее – десятки и, достигая нагрева свыше 100-200 градусов по Цельсию начинается необратимый процесс который неминуемо приведет к возгоранию изоляции проводов с последующим возникновением и развитием пожаров.

    Важным является и то обстоятельство, что современные аппараты защиты и устройства защитного отключения электрических цепей не способны вовремя «распознать» большинство аварийных режимов (таких как неплотный контакт, повреждение изоляции, неполного короткого замыкания и т.п.), а порой не обесточивают участок электрической цепи даже когда горение уже началось.

    Поэтому, на наш взгляд, одним из наиболее перспективных методов пожарной профилактики электроустановок является тепловой метод неразрушающего контроля (тепловизионная диагностика), который позволяет обнаружить по превышению температуры дефекты контактных соединений, участки перегрузки кабелей, произвести оценку теплового состояния электрооборудования в процессе его эксплуатации без снятия напряжения. Таким образом, появляется возможность выявлять многие дефекты на ранней стадии их развития и тем самым предотвращать вероятные пожароопасные ситуации.

    Как видно на фото №3, на первый взгляд (изображение слева), контактная группа выглядит вполне обычно и не вызывает каких-либо опасений. Однако, при тепловизионной диагностике видно, что одна из жил (в красной изоляции) в месте контакта имеет аномальный нагрев, который отсутствует на двух других жилах в группе. Такой нагрев свидетельствует о наличии неплотного контактного соединения, который при дальнейшей эксплуатации будет нагреваться до более высоких температур и в конечном счете приведет к пожару. При своевременной же диагностике такой неисправности достаточным будет простая подтяжка соединений и нагрев жилы будет ликвидирован.

    Актуальность и эффективность внедрения в практику тепловизионных обследований подтверждают результаты деятельности испытательной лаборатории муниципального учреждения «Раменская служба спасения и антикризисного реагирования" (МУ РамСпас). В период с ноября 2008 г. по февраль 2010 г. проведено выборочное тепловизионное обследование электрооборудования на 198 объектах, из которых 137 — детские учреждения, 17 - учреждения культуры и 44 - прочие, в т.ч. жилые объекты. На 52 объектах обследования проводились повторно.

    На 134 (т.е. на 68 % от количества обследованных!) объектах было выявлено в общей сложности 455 дефектов, из которых 101 - аварийный, пожароопасный, требующий немедленного устранения. На 64 объектах дефектов не обнаружено. Основными причинами аварийности явились некачественные болтовые контактные соединения и неравномерное распределение нагрузки по фазам. В некоторых электрощитах перегрев достигал значений более 300°С!

    Как видно из всего вышеизложенного, обследования электрических сетей объектов с применением тепловизора имеют высокую эффективность по выявлению и адресному устранению пожароопасных элементов в электрооборудовании. Неоспоримыми преимуществами тепловизионного обследования являются: объективность и точность получаемых данных, не требуется отключение электрооборудования. Кроме этого, метод отличается простотой документирования дефектов и возможностью определения дефектов на ранней стадии развития, что позволяет использовать тепловизионные обследования для оценки состояния электрооборудования в части его пожарной безопасности на практике.

    Постоянное развитие индустрии бытовых приборов, значительно повышающих уровень современной жизни, является причиной значительно возросшего среднестатистического электропотребления. Большинство внутриквартирных электрических сетей были рассчитаны совсем не на такую нагрузку. Поэтому, приобретая мощную электрическую бытовую технику нужно задумываться, а выдержит ли наша проводка подобные нагрузки, может быть необходима замена старой электропроводки?

    Множество пожаров сегодня случаются именно по причине неисправной электропроводки. Согласно ст. 210 Гражданского кодекса РФ, каждый собственник несет бремя содержания принадлежащего ему имущества. Таким образом, следить за состоянием электропроводки в квартире – это обязанность хозяина квартиры.

    Причин неисправностей электропроводки несколько. Зачастую провода в щите воспламеняются из-за плохого контакта, что приводит к нагреванию изоляции и её плавлению вплоть до возгорания.

    Также причиной неисправности может послужить утечка электричества. Это происходит в случае плохой изоляции, в виду чего часть энергии может пойти не в то русло. Примером могут послужить случаи, когда провода проложены под штукатуркой. Если она сухая, тогда послужит замечательным изолятором. Но в случаях попадания влаги может привести к печальным последствиям.

    Но самым распространенным случаем возгорания является короткое замыкание. Наиболее распространенные причины короткого замыкания: перетирание изоляции в местах, где провода перегибаются; перекручивание или сгибание проводов; закорачивание металлическими предметами штепсельных гнезд. Короткое замыкание может произойти из-за повреждения скрытой проводки в результате, например, забивания гвоздей, пробивании в стене отверстий и т.д. Еще одна причина - перегрев и разрушение изоляции из-за пользования электроприборами, потребляющими большой ток, при плохом состоянии электропроводки. В результате короткого замыкания может возникнуть пожар.

    Поэтому следить за состоянием электрохозяйства в квартире нужно обязательно. Необходимо регулярно обращать внимание на электророзетки и проводку, особенно на те, которые расположены вне поля видимости: за мебелью, крупной электротехникой. Если там установлена электророзетка, то из-за теплового проявления электрического тока может произойти нагревание контактов, розетка воспламенится, и как следствие загорится мебель и начнется пожар.

    Поэтому следует заранее продумывать и обеспечивать безопасность проведения электропроводки в квартире, делать тщательную изоляцию и устранять дефекты, во избежание плачевных последствий. Нужно знать, что электромонтажные работы являются работами с повышенной опасностью. В таких вопросах нужно доверять только профессиональным электрикам.

    Главное управление МЧС России по Республике мордовия напоминает, что нужно следить за состоянием электропроводки в доме, своевременно заменять провода с поврежденной изоляцией, а также в зимний период с максимальной осторожностью использовать электрооборудование для обогрева.

    Обычно после возгорания в первую очередь следует выяснить виновного в подобном происшествии. Точные данные, какие неисправности электропроводки могут привести к пожару , станут поводом для предъявления иска о возмещении ущерба. Сегодня мы рассмотрим, что способствует воспламенению, и способы защиты от его последствий.

    Причины возгорания

    Только четкое соблюдение мер безопасности оградит потребителей от угрозы возникновения пожара. Еще одна потенциальная угроза в подобной ситуации – поражение током. Есть несколько главных причин воспламенения.

    Технические неисправности

    Места соединения и общее состояние разводки требуют самого пристального внимания. Постоянный контроль необходим за местами установки приборов защиты и подачи магистралей кабеля – распределительным и основным щитами. Следует проверять эти компоненты сети на нормальное рабочее состояние. Также, на случай возникновения нештатных ситуаций, нужно предусмотреть установку резервной защиты.

    Места соединений особо опасны при плохом контакте, из-за которого легко возникает возгорание. Устройства защитного отключения в любом помещении, а особенно в зонах с высокой влажностью, будут гарантией надежности и безопасности в процессе эксплуатации.

    Неправильный выбор автоматического выключателя

    Мгновенное срабатывание в случае перегрузки или – главная функция автомата. Поэтому соответствие номинала выключателя сечению проводки остается основным критерием на стадии выбора прибора. Если пренебречь подобным требованием, срабатывание может не состояться или произойти слишком поздно.

    Ошибки при эксплуатации

    Граница допустимой нагрузки есть у любого прибора. При подключении разных удлинителей или нескольких мощных потребителе й в одну розетку могут спровоцировать возгорание. Потенциальная угроза исходит от шнуров или вилок со следами повреждения. При первых признаках нагрева в любом месте проводки или прибора необходимо проверить состояние контактных соединений.

    Проблемы с группой освещения

    Различные причины могут негативно воздействовать на осветительные элементы. Важно принять меры для предотвращения на выключатели влаги, а на лампы накаливания – брызг.

    Соединение медного и алюминиевого проводников

    В ряду проблем технического плана часто встречается нарушение подобного рода. Опасность пожара существует даже при выполнении соединения нулевых проводов посредством специальной планки. Исключается применение в качестве материала для таких планок латуни из-за их постепенного окисления. В сочетании с алюминием это увеличивает процессы нагревания и вероятность возгорания.

    В ситуации с размещением подобного соединения внутри пластикового щитка последствия выглядят еще более плачевными. Обойтись без соединения меди и алюминия невозможно, но делать это нужно или с использованием специальных гильз, или с помощью клеммных коробок.

    Плохое качество розеток

    Вилку прибора должна входить в розетку плотно и надежно фиксироваться в ней. При возникновении искр или повышении температуры штепселя незамедлительно поменяйте розетку. Не следует при этом пытаться сэкономить и покупать дешевые модели. В них пластик сильно нагревается, а контактные соединения выполнены без сжимных пружин.

    Устаревшая проводка

    В здания старой постройки распредщиты находятся на лестничных клетках. Из-за значительной запущенности уровень безопасности в таких местах практически равен нулю. Проводка не меняется многие десятилетия, что означает разрушение изоляции и полную негодность токопродников. Значительно возрастает вероятность коротких замыканий, которые провоцируются использованием в квартирах намного большего числа электроприборов и возросшими параметрами нагрузки на алюминиевые провода.

    Некачественные электротехнические товары

    На рынке, к сожалению, участились случаи продаж изделий, которые не в состоянии справиться с нагрузкой, указанной производителем. Потребители сталкиваются с необходимостью менять недавно установленные кабеля и провода из-за трещин и осыпания изоляции.

    Главные меры по защите от пожара

    Одним из основных правил является прокладка проводки не под легковоспламеняющимися материалами, а под слоем штукатурки. Хорошо зарекомендовали себя на практике щитки из негорючего пластика и металла.

    Важно учитывать потребность в ежегодной ревизии электросети. Рекомендуется внимательно осмотреть электрощит и распредкоробку, все выключатели и контакты в розетках. Выявление дефектов в местах соединений и мест с признаками оплавления остается одним из надежных способов борьбы с возгоранием.

    Неприятности могут в любой миг произойти по причине неподходящих к нагрузке пробок, плохой розетки или повреждений изоляции. Заменить проводку, прослужившую определенный срок, следует во время первого ремонта помещения. А до этого не пожалейте средств на и автоматов. В деревянных строениях в роли дополнительной защиты используется установка на вводе противопожарного устройства защитного отключения на 100 и 300 мА.

    Также важным моментом является отсутствие скруток, которые при некачественном исполнении становятся фактором возникновения короткого замыкания.

    При появлении признаков гари в помещении и неуверенности в своем умении справиться с неполадками следует отключить автоматы и дождаться прихода профессионального электрика.

    Способы тушения горящей проводки

    Обязательно изучите порядок действий при пожаре, а также характеристики используемых для гашения воспламенения огнетушителей.

    Запрещается пользоваться водой для случаев нахождения проводки под напряжением. В таком случае неизбежно поражение током, ведь водная среда – прекрасный проводник электричества. При отключении питания допускается применение огнетушителей, воды или песка. Во всех остальных ситуациях необходимо только использование огнетушителей, относящихся к классу Е.

    Для гашения пожара под напряжением не более 1000 вольт применяются порошковые, аэрозольные и углекислотные средства тушения. А при параметрах напряжения выше этого показателя нужно отключить сеть. При наличии напряжения категорически запрещается применять пенно-химические и пенно-воздушные огнетушители.

    Похожие материалы.

    Электричество является источником энергии, и приносит пользу до тех пор, пока не выйдет из-под контроля. Вырвавшись на свободу, оно может сотворить немало бед, главная из которых пожар.

    Основной причиной пожароопасных ситуаций является, конечно же, неисправная электропроводка. Необходимо следить за состоянием изоляции проводов и кабелей, вовремя производить замену поврежденных. Также большую опасность в пожарном плане представляет старая проводка, выполненная «при царе Горохе». Со временем изоляция таких проводов просто высыхает, растрескивается и осыпается, что может привести к короткому замыканию и возгоранию помещений.

    Старая проводка выполнялась проводами, качество изоляции которых было намного ниже, чем у современных. Стоит вспомнить хотя бы шнуры старых электроприборов в ниточной изоляции или внешнюю открытую проводку на керамических роликах.

    Причиной повышенной пожароопасности может стать недостаточное сечение токопроводящих жил (ТПЖ). Провод с сечением ТПЖ 0,75мм2 вполне достаточен для подключения лампочки или даже люстры. Но если к такому проводу подключить современную стиральную машину, утюг или чайник, то он будет сильно греться, что приведет к расплавлению изоляции, а затем и к короткому замыканию. Строго говоря, сечение ТПЖ подбирается из предполагаемой нагрузки либо по расчетам, либо с помощью готовых таблиц на стадии проектирования электропроводки.

    Утечка электричества

    Повреждение изоляции проводов может привести к такой неисправности, как утечка. Это вероятность того, что в определенных условиях часть энергии может пойти не туда, куда следует. Простой пример. Провода проложены под штукатуркой.

    В сухом состоянии она прекрасный изолятор, поэтому повреждение изоляции ТПЖ никак не обнаруживается. Но если при каких-то условиях штукатурка увлажнится, например, протекло отопление или водопровод, она сразу же становится проводящей, не сказать бы даже источником электричества. При контакте человека с такой стеной вполне возможно поражение электрическим током.

    Короткое замыкание и его причины

    Известно, что неисправная электропроводка приводит к короткому замыканию, от него чаще всего и возникает возгорание. Об этом частенько упоминается в пожарных отчетах. Что же такое короткое замыкание, чем оно опасно?

    В нормальном режиме работы ток в проводке между фазным и нулевым проводами протекает через нагрузку, которая этот ток ограничивает на безопасном для проводки уровне. При разрушении изоляции ток протекает, минуя нагрузку, сразу между проводами. Такой контакт, называется коротким, поскольку происходит помимо электроприбора.