Тепловые двигатели и их применение. Применение тепловых двигателей Виды тепловых двигателей и их применение презентация




Тепловым двигателем называют устройство, совершающее работу за счет использования внутренней энергии топлива. Все тепловые двигатели обладают общим свойством периодичностью действия (цикличностью), в результате чего рабочее тело периодически возвращается в исходное состояние.






Паровая машина тепловой двигатель внешнего сгорания, преобразующий энергию пара в механическую работу возвратно- поступательного движения поршня, а затем во вращательное движение вала. Первое известное устройство, приводимое в движение паром, было описано Героном Александрийским в первом столетии.



Двигатель внутреннего сгорания тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу. Первый практически пригодный газовый двигатель внутреннего сгорания был сконструирован французским механиком Этьеном Ленуаром () в 1860 году. Мощность двигателя составляла 8,8 кВт (12 л. с.).



Паровая турбина тепловой двигатель, в котором энергия пара преобразуется в механическую работу. Газовая турбина, тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого я нагретого газа преобразуется в механическую работу на валу.



Реактивный двигатель двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела. Реактивный двигатель был изобретен Гансом фон Охайном, выдающимся немецким инженером- конструктором и Фрэнком Уиттлом.






ГОКУ АО «Общеобразовательная школа при учреждениях исполнения наказания», г. Благовещенск

Тепловые двигатели.


Тепловыми двигателями называют машины, в которых внутренняя энергия топлива превращается в механическую энергию.

Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).

Позже в Китае появилось пороховое орудие и пороховая ракета. Это было сравнительно простое устройство. С точки зрения механики пороховая ракета не являлась тепловым двигателем, а с точки зрения физики являлась тепловой машиной. Уже в 17 веке ученые пытались изобрести на основе порохового орудия тепловой двигатель.

Пороховой снаряд в Древнем Китае

  • Виды тепловых двигателей
  • Тепловые двигатели внешнего сгорания:

1.Двигатель Стирлинга - это тепловой аппарат, в котором газообразное или жидкое рабочее тело совершает движения в замкнутом пространстве. Это устройство основано на периодическом охлаждении и нагреве рабочего тела. При этом извлекается энергия, которая возникает при изменении объема рабочего тела. Двигатель Стирлинга может работать от любого источника тепла.

Был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года. Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века, задолго до Стирлинга. Достижением Стирлинга является добавление узла, который он назвал «эконом».

Роберт Стирлинг -

создатель знаменитого альтернативного паровой машине двигателя, названного в его честь.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в двигатель Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.


2.Паровая машина

Джеймс Уатт – шотландский инженер-изобретатель, создатель универсальной паровой машины

Схема работы паровой машины Уатта

Главный плюс паровых машин - простота и отличные тяговые качества. При этом можно обходиться без редуктора. По этой причине паровую машину удобно использовать в качестве тягового двигателя.

Недостатки: низкий КПД, невысокая скорость, постоянный расход воды и топлива, большой вес

Паровая машина - любой тепловой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу.


Грузовик с паровым двигателем

Паровая пожарная машина

Трактор с паровым двигателем

(КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла. Паровой двигатель, выпускающий пар в атмосферу, будет иметь КПД от 1 до 8 %, усовершенствованный двигатель может улучшить КПД до 25 % и даже более.


Тепловая электростанция может достичь КПД в 30-42 %. Парогазовые установки могут достигать КПД в 50-60 %.

На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.



ТЕПЛОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ:

  • ДВС (двигатель внутреннего сгорания) - это двигатель, в процессе работы которого, часть сгорающего топлива преобразуется в механическую энергию.

Первый ДВС был придуман и создан

Э. Ленуаром в 1860 году. Рабочий цикл состоит из четырех тактов, по этой причине этот двигатель ещё называют четырехтактным. В настоящее время такой двигатель чаще всего встречается на автомобилях.

Рудольф Дизель(1858-1913).

Немецкий инженер, создатель ДВС,

используемого по настоящее время


2. Роторный ДВС

Этот вид двигателя относительно прост и может быть создан в любых размерах. Вместо поршней используется ротор, вращающийся в специальной камере. В ней расположены впускные отверстия и выпускные, а также свеча зажигания. При таком типе конструкции четырехтактный цикл осуществляется без механизма газораспределения. В роторном ДВС можно использовать дешевое топливо. Также он практически не создаёт вибраций, дешевле и надежнее в производстве, чем поршневые тепловые двигатели.

«Mazda» на базе роторного мотора.


3. Ракетные и реактивные тепловые двигатели.

Суть этих устройств состоит в том, чтобы тяга создавалась не с помощью винта, а посредством отдачи выхлопных газов двигателя.

Могут создавать тягу в пространстве без воздуха.

Бывают твердотопливные, гибридные и жидкостные). И последний подвид - это турбовинтовые тепловые двигатели. Создание энергии происходит за счёт винта и за счёт отдачи выхлопных газов.

Схема устройства реактивного двигателя


Ан-140- турбовинтовой грузопассажирский самолёт

Cлайд 1

Cлайд 2

Тепловой двигатель - устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию использует зависимость теплового расширения вещества от температуры. Действие теплового двигателя подчиняется законам термодинамики.

Cлайд 3

Тепловые двигатели - паровые турбины - устанавливаются на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока, а также на всех атомных электростанциях для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном - поршневые двигатели внутреннего сгорания, на водном - двигатели внутреннего сгорания и паровые турбины, на железнодорожном - тепловозы с дизельными установками, в авиации - поршневые, турбореактивные и реактивные двигатели.

Cлайд 4

Паровые машины. Паросиловая станция. Работа этих двигателей производится посредством пара. В огромном большинстве случаев - это водяной пар, но возможны машины, работающие с парами других веществ (например, ртути). Паровые турбины ставятся на мощных электрических станциях и на больших кораблях. Поршневые двигатели в настоящее время находят применение только в железнодорожном и водном транспорте (паровозы и пароходы).

Cлайд 5

Паровая турбина Это тепловой двигатель ротационного типа,преобразующийпотенциальную энергию пара сначала в кинетическую энергию и далее в механическую работу. Паровые турбины применяются преимущественно на электростанциях и на транспортных силовых установках – судовых и локомотивных, а также используются для приведения в движение мощных воздуходувок и других агрегатов.

Cлайд 6

Поршневая паровая машина Основы конструкции поршневой паровой машины, изобретенной в конце XVIII века, в основном сохранились до наших дней. В настоящее время она частично вытеснена другими типами двигателей. Однако у нее есть свои достоинства, заставляющие иногда предпочесть ее турбине. Это - простота обращения с ней, возможность менять скорость и давать задний ход.

Cлайд 7

Двигатели внутреннего сгорания. Бензиновый двигатель внутреннего сгорания. Самый распространенный тип современного теплового двигателя,устанавливается на автомобилях, самолетах, танках, тракторах, моторных лодках и т. д. Двигатели внутреннего сгорания могут работать на жидком топливе (бензин, керосин и т. п.) или на горючем газе, сохраняемом в сжатом виде в стальных баллонах или добываемом сухой перегонкой из дерева (газогенераторные двигатели).

Cлайд 8

Дизельный двигатель Дизельный двигатель - поршневой двигатель внутреннего сгорания, работающий по принципу воспламенения распыленного топлива от соприкосновения с разогретым сжатым воздухом. Дизельные двигатели работают на дизельном топливе. Поджигаются горячим воздухом.

Cлайд 9

Реактивные двигатели. Реактивный двигатель - двигатель создающий необходимую для движения силу тяги посредством преобразования потенциальной энергии топлива в кинетическую энергию реактивной струи рабочего тела. Существует два основных класса реактивных двигателей: Воздушно-реактивные двигатели - тепловые двигатели, которые используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха. Ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве. Для сжигания горючего он не нуждается в кислороде воздуха.

Cлайд 10

Роторные двигатели. Газовые турбины Газовая турбина - это двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу. Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ). краткое содержание других презентаций

«История изобретения паровых машин» - Паровая машина. Преимущества. Первый паровоз. Паровая турбина Герона. История изобретения паровых машин. Немного истории. Первый паровой автомобиль. Определение. Паровые машины. Цель. Трудно представить нашу жизнь без электричества.

««Электрический ток» 8 класс» - Вольтметр. Сила тока. Ампер Андре Мари. Ом Георг. За единицу сопротивления принимают 1 Ом. Амперметр. Единица измерения силы тока. Электрическое напряжение на концах проводника. Взаимодействие движущихся электронов с ионами. Измерение силы тока. Измерение напряжения. Определение сопротивления проводника. Алессандро Волта. Напряжение. Сопротивление прямо пропорционально длине проводника. Электрический ток.

«Виды тепловых двигателей» - Совершает работу. Передает количество теплоты Q1 рабочему телу. Как устроены тепловые двигатели? Затем в нагретую часть ствола наливали воду. Наибольшее распространение в технике получил четырехтактный ДВС. Пар, расширяясь, с силой и грохотом выбрасывал ядро. История создания тепловых двигателей. Применение тепловых двигателей. ДалекО в проШлоМ… Кто и когда изобрёл? Понятие об основных частях. Потребляет часть полученного количества теплоты Q2.

«Формулировка закона Ома» - Сопротивление. Вольт. Рассмотрим электрическую цепь. Удельное сопротивление проводника. Проволока. Закон Ома для полной цепи. Формула и формулировка закона Ома. Расчет сопротивления проводника. Формулы. Формула сопротивления проводника. Единицы измерения. Закон Ома для участка цепи. Треугольник формул. Сопротивление проводника. Закон Ома. Электрическое сопротивление. Удельное сопротивление.

«Постоянные магниты» - Северный полюс. Намагничивание железа. Происхождение магнитного поля. Земное магнитное поле. Магнитное поле на Луне. Замкнутость силовых линий. Разноимённые магнитные полюсы. Катушка с током. Магнитное действие катушки с током. Магнитное поле у планеты Венера. Постоянные магниты. Магнитные полюсы Земли. Свойства магнитных линий. Магнитные аномалии. Искусственные магниты. Магнит, имеющий один полюс.

«Влияние атмосферного давления» - Цель проекта. Как мы пьем. Кому легче ходить по грязи. Как используется атмосферное давление. Как пьёт слон. Мухи и древесные лягушки могут держаться на оконном стекле. Человек не может легко ходить по болоту. Давление атмосферного воздуха. Наличие атмосферного давления привело людей в замешательство. Выводы. Как мы дышим.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Тепловой двигатель - устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию использует зависимость теплового расширения вещества от температуры. Действие теплового двигателя подчиняется законам термодинамики.

3 слайд

Описание слайда:

Тепловые двигатели - паровые турбины - устанавливаются на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока, а также на всех атомных электростанциях для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном - поршневые двигатели внутреннего сгорания, на водном - двигатели внутреннего сгорания и паровые турбины, на железнодорожном - тепловозы с дизельными установками, в авиации - поршневые, турбореактивные и реактивные двигатели.

4 слайд

Описание слайда:

Паровые машины. Паросиловая станция. Работа этих двигателей производится посредством пара. В огромном большинстве случаев - это водяной пар, но возможны машины, работающие с парами других веществ (например, ртути). Паровые турбины ставятся на мощных электрических станциях и на больших кораблях. Поршневые двигатели в настоящее время находят применение только в железнодорожном и водном транспорте (паровозы и пароходы).

5 слайд

Описание слайда:

Паровая турбина Это тепловой двигатель ротационного типа,преобразующийпотенциальную энергию пара сначала в кинетическую энергию и далее в механическую работу. Паровые турбины применяются преимущественно на электростанциях и на транспортных силовых установках – судовых и локомотивных, а также используются для приведения в движение мощных воздуходувок и других агрегатов.

6 слайд

Описание слайда:

Поршневая паровая машина Основы конструкции поршневой паровой машины, изобретенной в конце XVIII века, в основном сохранились до наших дней. В настоящее время она частично вытеснена другими типами двигателей. Однако у нее есть свои достоинства, заставляющие иногда предпочесть ее турбине. Это - простота обращения с ней, возможность менять скорость и давать задний ход.

7 слайд

Описание слайда:

Двигатели внутреннего сгорания. Бензиновый двигатель внутреннего сгорания. Самый распространенный тип современного теплового двигателя,устанавливается на автомобилях, самолетах, танках, тракторах, моторных лодках и т. д. Двигатели внутреннего сгорания могут работать на жидком топливе (бензин, керосин и т. п.) или на горючем газе, сохраняемом в сжатом виде в стальных баллонах или добываемом сухой перегонкой из дерева (газогенераторные двигатели).

8 слайд

Описание слайда:

Дизельный двигатель Дизельный двигатель - поршневой двигатель внутреннего сгорания, работающий по принципу воспламенения распыленного топлива от соприкосновения с разогретым сжатым воздухом. Дизельные двигатели работают на дизельном топливе. Поджигаются горячим воздухом.

9 слайд

Описание слайда:

Реактивные двигатели. Реактивный двигатель - двигатель создающий необходимую для движения силу тяги посредством преобразования потенциальной энергии топлива в кинетическую энергию реактивной струи рабочего тела. Существует два основных класса реактивных двигателей: Воздушно-реактивные двигатели - тепловые двигатели, которые используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха. Ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве. Для сжигания горючего он не нуждается в кислороде воздуха.

10 слайд